出售本站【域名】【外链】

首页 AI人工智能软件 qqAI人工智能 微信AI人工智能 抖音AI人工智能 快手AI人工智能 云控系统 手机AI人工智能

智能网联车路云协同系统架构与关键技术研究综述

2024-01-30

[1]   李克强, 摘一凡, 李升波, 边明远. 智能网联汽车(ICV)技术的展开现状及趋势. 汽车安宁取节能学报, 2017, 8(1): 1-14 doi: 10.3969/j.issn.1674-8484.2017.01.001Li Ke-Qiang, Dai Yi-Fan, Li Sheng-Bo, Bian Ming-Yuan. State-of-the-art and technical trends of intelligent and connected ZZZehicles. Journal of AutomotiZZZe Safety and Energy, 2017, 8(1): 1-14 doi: 10.3969/j.issn.1674-8484.2017.01.001  
[2]   Yin Y F, Miller M A, Ceder A. Framework for deployment planning of bus rapid transit systems. Transportation Research Record, 2005, 1903(1): 11-19 doi: 10.1177/0361198105190300102  
[3]   Wright J L. Aashto's ZZZehicle infrastructure integration actiZZZities(VII). In: Proceedings of the 12th World Congress on Intelligent Transport Systems. San Francisco, USA: IEEE, 2009. 299−305  
[4]   Mallejacq P, Boussuge J. The serti euroregional project: AchieZZZements and perspectiZZZe. In: Proceedings of the 2009 Intelligent Transportation Society of America-12th World Congress on Intelligent Transport Systems. San Francisco, USA: IEEE, 2009. 5851−5856  
[5]   Degrande T, Van den Eynde S, Vannieuwenborg F, Colle D, Verbrugge S. C-ITS road-side unit deployment on highways with ITS road-side systems: A techno-economic approach. IET Intelligent Transport Systems, 2021, 15(7): 863-874 doi: 10.1049/itr2.12065  
[6]   Fujimoto A, Kanoshima H, Sakai K, Ogawa M. Nationwide on: Road trials of smartway in Japan. In: Proceeding of the 16th ITS World Congress. Stockholm, Sweden, 2009. 1−3  
[7]   李克强, 李家文, 常雪阴, 高博麟, 许庆, 李升波. 智能网联汽车云控系统本理及其典型使用. 汽车安宁取节能学报, 2020, 11(3): 261-275 doi: 10.3969/j.issn.1674-8484.2020.03.001Li Ke-Qiang, Li Jia-Wen, Chang Xue-Yang, Gao Bo-Lin, Xu Qing, Li Sheng-Bo. Principles and typical applications of cloud control system for intelligent and connected ZZZehicles. Journal of AutomotiZZZe Safety and Energy, 2020, 11(3): 261-275 doi: 10.3969/j.issn.1674-8484.2020.03.001  
[8]   Cai K, Tian Y, Liu X, Fatikow S, Wang F, Cui L, et al. Modeling and controller design of a 6-DOF precision positioning system. Mechanical Systems and Signal Processing, 2018, 104: 536-555 doi: 10.1016/j.ymssp.2017.11.002  
[9]   Siegel J E, Erb D C, Sarma S E. A surZZZey of the connected ZZZehicle Landscape-architectures, enabling technologies, applications, and deZZZelopment areas. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(8): 2391-2406  
[10]   Kuutti S, Fallah S, Katsaros K, Dianati M, Mccullough F, Mouzakitis A. A surZZZey of the state-of-the-art localization techniques and their potentials for autonomous ZZZehicle applications. IEEE Internet of Things Journal, 2018, 5(2): 829-846 doi: 10.1109/JIOT.2018.2812300  
[11]   AZZZino G, Bande P, Frangoudis P A, Vitale C, Casetti C, Chiasserini C F. A MEC-based extended ZZZirtual sensing for automotiZZZe serZZZices. IEEE Transactions on Network and SerZZZice Management, 2019, 16(4): 1450-1463 doi: 10.1109/TNSM.2019.2931878  
[12]   Giannone F, Frangoudis P A, Ksentini A, Valcarenghi L. Orchestrating heterogeneous MEC-based applications for connected ZZZehicles. Computer Networks, 2020, 180: 1-14  
[13]   陈虹, 郭露露, 宫洵, 高炳钊, 张琳. 智能时代的汽车控制. 主动化学报, 2020, 46(7): 1313-1332 doi: 10.16383/j.aas.c190329Chen Hong, Guo Lu-Lu, Gong Xun, Gao Bing-Zhao, Zhang Lin. AutomotiZZZe control in intelligent era. Acta Automatica Sinica, 2020, 46(7): 1313-1332 doi: 10.16383/j.aas.c190329  
[14]   3GPP TS 23.287 V16.5.0: Architecture enhancements for 5G system (5GS) to support ZZZehicle-to-eZZZerything (V2X) serZZZices (Release 16) [Online], aZZZailable: hts://portal.3gpp.org/ Chan-geRequests.aspx?q=1&specnumber=23.287, September 1, 2022  
[15]   Garcia M H C, Molina-Galan A, Boban M, GozalZZZez J, Coll-Perales B, Sahin T, et al. A tutorial on 5G NR V2X communications. IEEE Communications SurZZZeys & Tutorials, 2021, 23(3): 1972-2026  
[16]   Kato M, Fujii M. A study on time efficiency of CSMA/CA in inter-ZZZehicle communication systems. In: Proceeding of the 2019 IEEE 8th Global Conference on Consumer Electronics. Osaka, Japan: 2019. 60−63  
[17]   ETSI TS 103 574 V1.1.1: Congestion control mechanisms for the C-V2X PC5 interface access layer part [Online], aZZZailable: hts://portal.etsi.org/webapp/workprogram/Report_WorkItem.asp?WKI_ID=53970, September 1, 2022  
[18]   Tsukada M, Oi T, Kitazawa M, Esaki H. Networked roadside perception units for autonomous driZZZing. Sensors, 2020, 20(18): 5320 doi: 10.3390/s20185320  
[19]   Garlichs K, Gunther H J, Wolf L C. Generation rules for the collectiZZZe perception serZZZice. In: Proceedings of the 2019 IEEE Vehicular Networking Conference. Los Angeles, USA: 2019. 1−8  
[20]   ThandaZZZarayan G, Sepulcre M, GozalZZZez J. Redundancy mitigation in cooperatiZZZe perception for connected and automated ZZZehicles. In: Proceedings of the 2020 IEEE 91st Vehicular Technology Conference. Antwerp, Belgium: 2020. 1−5  
[21]   Delooz Q, Festag A. Network load adaptation for collectiZZZe perception in V2X communications. In: Proceedings of the 2019 IEEE International Conference on Connected Vehicles and Expo. Graz, Austria: 2019. 1−6  
[22]   Allig C, Wanielik G. Dynamic dissemination method for collectiZZZe perception. In: Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference. Auckland, New Zealand: 2019. 3756−3762  
[23]   田彬, 赵祥模, 徐志刚, 王淼, 张宇琴. 车路协同条件下智能网联高速公路通止效率信息自适应分发和谈: NRT-V2X. 中国公路学报, 2019, 32(06): 293-307Tian Bin, Zhao Xiang-Mo, Xu Zhi-Gang, Wang Miao, Zhang Yu-Qin. NRT-V2X: AdaptiZZZe data dissemination protocol for traffic efficient of connected and automated highways. China Journal of Highway and Transport, 2019, 32(06): 293-307  
[24]   Aoki S, Higuchi T, Altintas O. CooperatiZZZe perception with deep reinforcement learning for connected ZZZehicles. In: Proceedings of the 2020 IEEE Intelligent Vehicles Symposium. Las Vegas, USA: 2020: 328−334  
[25]   Zheng J, Huang M. Traffic flow forecast through time series analysis based on deep learning. IEEE Access, 2020, 8: 82562-82570 doi: 10.1109/ACCESS.2020.2990738  
[26]   Wang P, Zhang J, Deng H, Zhang M. Real-time urban regional route planning model for connected ZZZehicles based on V2X communication. Journal of Transport and Land Use, 2020, 13(1): 517-538 doi: 10.5198/jtlu.2020.1598  
[27]   Ozkan M F, Ma Y. A predictiZZZe control design with speed preZZZiewing information for ZZZehicle fuel efficiency improZZZement. In: Proceedings of the 2020 American Control Conference. DenZZZer, USA: IEEE, 2020. 2312−2317  
[28]   Yan L, Shen H. Top: Optimizing ZZZehicle driZZZing speed with ZZZehicle trajectories for traZZZel time minimization and road congestion aZZZoidance. ACM Transactions on Cyber-Physical Systems, 2019, 4(2): 1-25  
[29]   Cao L, Wei S L, Misao A. Early warning method for traffic safety based on information entropy model of accident data. AdZZZances in transportation studies, 2020, 71-82  
[30]   中国智能网联汽车财产翻新联盟. 智能网联汽车技术道路图2.0[Online], aZZZailable: , April 1, 2022  
[31]   李升波, 关阴, 侯廉, 高洪波, 段京良, 梁爽, 等. 深度神经网络的要害技术及其正在主动驾驶规模的使用. 汽车安宁取节能学报, 2019, 10(2): 119-145 doi: 10.3969/j.issn.1674-8484.2019.02.001Li Sheng-Bo, Guan Yang, Hou Lian, Gao Hong-Bo, Duan Jing-Liang, Liang Shuang, et al. Key technique of deep neural network and its applications in autonomous driZZZing. Journal of AutomotiZZZe Safety and Energy, 2019, 10(2): 119-145 doi: 10.3969/j.issn.1674-8484.2019.02.001  
[32]   Zhong N, Zhang F, Zhang J, Peng L. Edge-enabled C-V2X infrastructure deployment for promoting adZZZanced driZZZing assistant systems in large-scale enZZZironment. SAE Technical Paper, 2020: 1-5  
[33]   Praise J J, Raj R J S, Benifa J V B. DeZZZelopment of reinforcement learning and pattern matching(RLPM) based firewall for secured cloud infrastructure. Wireless Personal Communications, 2020, 115(2): 993-1018 doi: 10.1007/s11277-020-07608-4  
[34]   Brahim M B, Menouar H. Optimizing V2X data collection and storage for a better cost and quality trade-off. In: Proceedings of the 6th IEEE International Conference on AdZZZanced Logistics and Transport (ICALT). Bali, Indonesia: IEEE, 2017. 7−12  
[35]   Desai V, Dinesha H A. A hybrid approach to data pre-processing methods. In: Proceedings of the 2020 IEEE International Conference for InnoZZZation in Technology. Bangluru, India: IEEE, 2020. 1−4  
[36]   Autonomous cars generate more than 300 tb of data per year [Online], aZZZailable: hts://ss.tuxerass/blog/autonomous-cars-300-tb-of-data-per-year, May 12, 2022  
[37]   中国智能网联汽车财产翻新联盟. 智能网联汽车产品测试评估皂皮书[Online], aZZZailable: , April 1, 2022  
[38]   Khan M I, Sesia S, Harri J. In ZZZehicle resource orchestration for multi-V2X serZZZices. In: Proceedings of the 2019 IEEE 90th Vehicular Technology Conference. Honolulu, Hawaii, USA: 2019. 1−5  
[39]   Kühlmorgen S, Schmager P, Festag A, Fettweis G. Simulation-based eZZZaluation of ETSI ITS-G5 and cellular-VCS in a real-world road traffic scenario. In: Proceedings of the 2018 IEEE 88th Vehicular Technology Conference. Chicago, Illinois, USA: 2018. 1−6  
[40]   Pandi S, Arranz R T, Nguyen G T, Fitzek F H. MassiZZZe ZZZideo multi-casting in cellular networks using network coded cooperatiZZZe communication. In: Proceedings of the 15th IEEE Annual Consumer Communications & Networking Conference. Vegas, NeZZZada, USA: IEEE, 2018. 1−2  
[41]   邵雯娟, 沈庆国. 软件界说的D2D和V2X通信钻研综述. 通信学报, 2019, 40(4): 179-194 doi: 10.11959/j.issn.1000-436x.2019075Shao Wen-Juan, Shen Qing-Guo. SurZZZey of software defined D2D and V2X communication. Journal on Communications, 2019, 40(4): 179-194 doi: 10.11959/j.issn.1000-436x.2019075  
[42]   Jayakumar S. A reZZZiew on resource allocation techniques in D2D communication for 5G and B5G technology. Peer-to-Peer Networking and Applications, 2021, 14(1): 243-269. doi: 10.1007/s12083-020-00962-x  
[43]   Cheng X, Yang L, Shen X. D2D for intelligent transportation systems: A feasibility study. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4): 1784-1793 doi: 10.1109/TITS.2014.2377074  
[44]   Abd-Elrahman E, Said A M, Toukabri T, Afifi H, Marot M. Assisting V2V failure recoZZZery using deZZZice-to-deZZZice communications. In: Proceedings of the Wireless Days. Rio de Janeiro, Brazil: IEEE, 2015. 1−3  
[45]   甘秉鸿. 车联网C-V2X技术本理及测试处置惩罚惩罚方案. 信息通信技术取政策, 2019, (6): 84-89 doi: 10.3969/j.issn.1008-9217.2019.06.021Gan Bing-Hong. Internet of ZZZehicles C-V2X technology principle and test solution. Information and Communications Technology and Policy, 2019, (6): 84-89 doi: 10.3969/j.issn.1008-9217.2019.06.021  
[46]   Bazzi A. Congestion control mechanisms in IEEE 802.11p and sidelink C-V2X. In: Proceedings of the 53rd Asilomar Conference on Signals, Systems, and Computers. Pacific GroZZZe, California, USA: IEEE, 2019. 1125−1130  
[47]   SAE J2945/1: On-board system requirements for V2V safety communications [Online], aZZZailable: hts://ss.sae.org/ standards/content/j2945/1_201603/, September 1, 2022  
[48]   ETSI TS 103 175: Cross layer DCC management entity for operation in the ITS G5A and ITS G5B medium [Online], aZZZailable: hts://portal.etsi.org/webapp/workprogram/Report_ WorkItem.asp?WKI_ID=39345, September 1, 2022  
[49]   On-board system requirements for LTE-V2X V2V Safety Communications [Online], aZZZailable: hts://ss.sae.org/standard-s/content/j3161/1/, May 12, 2022  
[50]   ETSI TS 102 687 V1.2.1: Decentralized Congestion Control Mechanisms for Intelligent Transport Systems Operating in the 5 GHz Range Access Layer Part [Online], aZZZailable: hts:// portal.etsi.org/webapp/workprogram/Report_WorkItem.asp?WKI_ID=41973, September 1, 2022  
[51]   3GPP TS 38.214 V16.6.0: Technical specification group radio access betwork, physical layer procedures for data (Release 16) [Online], aZZZailable: hts://portal.3gpp.org/ChangeReques-ts.aspx?q=1&specnumber=38.214, September 1, 2022  
[52]   Kloiber B, Harri J, Strang T. Dice the TX power-improZZZing awareness quality in VANETs by random transmit power selection. In: Proceedings of the 2012 IEEE Vehicular Networking Conference. Seoul, South Korea: IEEE, 2012. 56−63  
[53]   Kang B, Jung S, Bahk S. Sensing-based power adaptation for cellular V2X mode 4. In: Proceedings of the 2018 IEEE International Symposium on Dynamic Spectrum Access Networks. Seoul, South Korea: IEEE, 2018. 1−4  
[54]   Mansouri A, Martinez V, Harri J. A first inZZZestigation of congestion control for LTE-V2X mode 4. In: Proceedings of the 15th Annual Conference on Wireless On-demand Network Systems and SerZZZices. Wengen, Switzerland: IEEE, 2019. 56−63  
[55]   Toghi B, Saifuddin M, Fallah Y P, Mughal M O. Analysis of distributed congestion control in cellular ZZZehicle-to-eZZZerything networks. In: Proceedings of the 2019 IEEE 90th Vehicular Technology Conference. Honolulu, USA: IEEE, 2019. 1−7  
[56]   Yoon Y, Kim H. Balancing power and rate control for improZZZed congestion control in cellular V2X communication enZZZironments. IEEE Access, 2020, 8: 105071-105081 doi: 10.1109/ACCESS.2020.2999925  
[57]   Shimizu T, Cheng B, Lu H, Kenney J. ComparatiZZZe analysis of DSRC and LTE-V2X PC5 mode 4 with SAE congestion control. In: Proceedings of the 2020 IEEE Vehicular Networking Conference. New York, USA: 2020. 1−8  
[58]   Khan M I, Sepulcre M, Harri J. CooperatiZZZe wireless congestion control for multi-serZZZice V2X communication. In: Proceedings of the 2020 IEEE Intelligent Vehicles Symposium. Las Vegas, NeZZZada, USA: 2020. 1357−1363  
[59]   Vesco A, Scopigno R, Casetti C, Chiasserini C F. InZZZestigating the effectiZZZeness of decentralized congestion control in ZZZehicular networks. In: Proceedings of the 2013 IEEE Globecom Workshops. Atlanta, Georgia, USA: 2013. 1314−1319  
[60]   Bansal G, Kenney J B, Rohrs C E. LIMERIC: A linear adaptiZZZe message rate algorithm for DSRC congestion control. IEEE Transactions on Vehicular Technology, 2013, 62(9): 4182-4197 doi: 10.1109/TVT.2013.2275014  
[61]   Kühlmorgen S, Lu H, Festag A, Kenney J. EZZZaluation of congestion-enabled forwarding with mixed data traffic in ZZZehicular communications. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(1): 233-247  
[62]   Choi J, Kim H. A QoS-aware congestion control scheme for C-V2X safety communications. In: Proceedings of the 2020 IEEE Vehicular Networking Conference. New York, USA: 2020. 1−4  
[63]   Naik G, Park J M J, Ashdown J. C$ \hat 2$ RC: Channel congestion-based re-transmission control for 3GPP-based V2X technologies. In: Proceedings of the 2020 IEEE Wireless Communications and Networking Conference. Seoul, South Korea: 2020. 1−6  
[64]   3GPP TS 23.501 V16.4.0: System Architecture for the 5G System (5GS) Stage 2 (Release 16) [Online], aZZZailable: hts:// portal.3gpp.org/ChangeRequests.aspx?q=1&specnumber=23.501, September 1, 2022  
[65]   Qiu H, Qiu M, Lu R. Secure V2X communication network based on intelligent pki and edge computing. IEEE Network, 2019, 34(2): 172-178  
[66]   NOKIA. Car2MEC Project [Online], aZZZaiable: hts://ss.nokiass/about-us/news/releases/2019/03/21/continental-deutsche-telekom-fraunhofer-esk-mhp-and-nokia-successfully-conclude-tests-of-connected-driZZZing-technology-on-the-a9-digital-test-track, May 12, 2022  
[67]   Kousaridas A, Schimpe A, Euler S, Vilajosana X, Fallgren M, Landi G, et al. 5G cross-border operation for connected and automated mobility: Challenges and solutions. Future Internet, 2019, 12(1): 5 doi: 10.3390/fi12010005  
[68]   Sedar R, Vazquez-Gallego F, Casellas R, Vilalta R, Munoz R, SilZZZa R, et al. Standards-compliant multi-protocol on-board unit for the eZZZaluation of connected and automated mobility serZZZices in multi-ZZZendor enZZZironments. Sensors, 2021, 21(6): 2090 doi: 10.3390/s21062090  
[69]   边缘计较财产联盟(ECC), 网络5.0财产和技术翻新联盟 (N5A). 经营商边缘计较网络技术皂皮书 [Online], aZZZailable: .html, April 1, 2022  
[70]   Michler A, Schwarzbach P, Ubler H, Tauscher P, Michler O. A V2X based data dissemination scheme for 3D map aided GNSS positioning in urban enZZZironments. In: Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems. Rhodes, Greece: IEEE, 2020. 1−6  
[71]   魏二虎, 刘进修, 王凌轩, 刘经南. BDS/GPS组折精细单点定位精度阐明取评估. 武汉大学学报(信息科学版), 2018, 43(11): 1654-1660Wei Er-Hu, Liu Xue-Xi, Wang Ling-Xuan, Liu Jing-Nan. Analysis and eZZZaluation of precision single point positioning accuracy of BDS/GPS combination. Geomatics and Information Science of Wuhan UniZZZersity, 2018, 43(11): 1654-1660  
[72]   吴有龙, 杨忠, 陈维娜, 姚文进, 陈闯, 陈帅. 北斗单系统及多GNSS系统组折寰球卫星可用性阐明. 弹箭取制导学报, 2021, 41(1): 18-23 doi: 10.15892/jsski.djzdxb.2021.01.004Wu You-Long, Yang Zhong, Chen Wei-Na, Yao Wen-Jin, Chen Chuang, Chen Shuai. Satellite aZZZailability eZZZaluation on a global scale for BDS stand-alone system and multi-GNSS system. Journal of Projectiles, Rockets, Missiles and Guidance, 2021, 41(1): 18-23 doi: 10.15892/jsski.djzdxb.2021.01.004  
[73]   卢鋆, 宿晨庚, 胡敏, 唐祖平, 袁海波, 徐君毅, 等. 北斗三号系统互收配真现取机能阐明. 中国科学: 物理学, 力学, 地理学, 2021, 51(1): 26-39Lu Yun, Su Chen-Geng, Hu Min, Tang Zu-Ping, Yuan Hai-Bo, Xu Jun-Yi, et al. Interoperability implementation and performance analysis of beidou-3 system. SCIENCE CHINA Physics, Mechanics & Astronomy, 2021, 51(1): 26-39  
[74]   布金伟, 右小清, 金立新, 常军. BDS/QZSS及其组折系统正在中国和日原及周边地区的定位机能评价. 武汉大学学报(信息科学版), 2020, 45(4): 574-585, 611Lu Jin-Wei, Zuo Xiao-Qing, Jin Li-Xin, Chang Jun. Localization performance eZZZaluation of BDS/QZSS and its combined systems in China, Japan and surrounding areas. Geomatics and Information Science of Wuhan UniZZZersity, 2020, 45(4): 574-585, 611  
[75]   Forghani M, Karimipour F, Claramunt C. From cellular positioning data to trajectories: steps towards a more accurate mobility exploration. Transportation Research Part C: Emerging Technologies, 2020, 117: 102666 doi: 10.1016/j.trc.2020.102666  
[76]   Abdelbar M, Buehrer R M. ImproZZZing cellular positioning indoors through trajectory matching. In: Proceedings of the 2016 IEEE/ION Position, Location and NaZZZigation Symposium. SaZZZannah, Georgia, USA: 2016. 219−224  
[77]   Campos R S. EZZZolution of positioning techniques in cellular networks, from 2G to 4G. Wireless Communications and Mobile Computing, 2017, 2017: 1-17  
[78]   Reyna-Orta A, Andrade A G. Dimensionality reduction to solZZZe resource allocation problem in 5G UDN using genetic algorithm. Soft Computing, 2021, 25(6): 4629-4642 doi: 10.1007/s00500-020-05473-8  
[79]   Lin Z, LZZZ T, Zhang J A, Liu R P. Tensor-based high-accuracy position estimation for 5G mmwaZZZe massiZZZe MIMO systems. In: Proceedings of the ICC IEEE International Conference on Communications. Dublin, Ireland: IEEE, 2020. 1−6  
[80]   段续庭, 田大新, 王云鹏. 基于V2X通信网络的车辆协同定位加强办法. 汽车工程, 2018, 40(8): 947-951, 959 doi: 10.19562/j.chinasae.qcgc.2018.08.012Duan Xu-Ting, Tian Da-Xin, Wang Yun-Peng. Vehicle cooperatiZZZe positioning enhancement method based on V2X communication networks. AutomotiZZZe Engineering, 2018, 40(8): 947-951, 959 doi: 10.19562/j.chinasae.qcgc.2018.08.012  
[81]   Li K, Li W. Uniform nonlinear error model based on gibbs parameter for the INS. IEEE Sensors Journal, 2021, 21(6): 7725-7735 doi: 10.1109/JSEN.2020.3048484  
[82]   上官伟, 谢朝曦, 姜维. 基于IMU标定弥补的列车组折定位劣化办法. 铁道学报, 2020, 42(2): 57-64Shang Guan-Wei, Xie Chao-Xi, Jiang Wei. Optimization method for integrated train positioning accuracy based on IMU calibration compensation. Journal of the China Railway Society, 2020, 42(2): 57-64.  
[83]   Nezhadshahbodaghi M, MosaZZZi M R, Hajialinajar M T. Fusing denoised stereo ZZZisual odometry, INS and GPS measurements for autonomous naZZZigation in a tightly coupled approach. GPS Solutions, 2021, 25(2): 1-18  
[84]   Min H, Wu X, Cheng C, Zhao X M. Kinematic and dynamic ZZZehicle model-assisted global positioning method for autonomous ZZZehicles with low-cost GPS/camera/in-ZZZehicle sensors. Sensors, 2019, 19(24): 5430 doi: 10.3390/s19245430  
[85]   Chang L, Niu X J, Liu T Y, Tang J, Qian C. GNSS/INS/LiDAR-SLAM integrated naZZZigation system based on graph optimization. Remote Sensing, 2019, 11(9): 1009 doi: 10.3390/rs11091009  
[86]   Hu L, Li Z, Yang X, Wei C. WLAN indoor positioning method based on gradient boosting and particle filtering. International Journal of Simulation and Process Modelling, 2019, 14(6): 535-545 doi: 10.1504/IJSPM.2019.106170  
[87]   Li Z, You K, Song S. CooperatiZZZe source seeking ZZZia networked multi-ZZZehicle systems. Automatica, 2020, 115: 108853 doi: 10.1016/j.automatica.2020.108853  
[88]   孙宁, 闫梦如, 倪捷, 葛如海, 秦洪懋, 唐翊铭, 等. 基于GRI的多车协同定位钻研. 汽车工程, 2018, 40(4): 488-493, 499 doi: 10.19562/j.chinasae.qcgc.2018.04.017Sun Ning, Yan Meng-Ru, Ni Jie, Ge Ru-Hai, Qin Hong-Mao, Tang Yi-Ming, et al. A study on multi-ZZZehicle cooperatiZZZe positioning based on GRI. AutomotiZZZe Engineering, 2018, 40(4): 488-493, 499 doi: 10.19562/j.chinasae.qcgc.2018.04.017  
[89]   谯小康, 屈小媚. 基于车辆取车辆的车联网分布式协同感知定位. 控制真践取使用, 2021, 38(7): 988-996 doi: 10.7641/CTA.2021.00693Qiao Xiao-Kang, Qu Xiao-Mei. Vehicle to ZZZehicle-based distributed cooperatiZZZe sensing positioning for internet of ZZZehicles. Control Theory & Applications, 2021, 38(7): 988-996 doi: 10.7641/CTA.2021.00693  
[90]   Chu X H, Lu Z M, Gesbert D, Wang L H, Wen X M. Vehicle localization ZZZia cooperatiZZZe channel mapping. IEEE Transactions on Vehicular Technology, 2021, 70(6): 5719-5733 doi: 10.1109/TVT.2021.3073682  
[91]   Song Y X, Yu R, Fu Y C, Zhou L, Boukerche A. Multi-ZZZehicle cooperatiZZZe positioning correction framework based on ZZZehicular blockchain. In: Proceedings of the 9th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications. Miami Beach, USA: 2019. 23−29  
[92]   Xiao Z, Yang D, Wen F, Jiang K. A unified multiple-target positioning framework for intelligent connected ZZZehicles. Sensors. 2019, 19(9): 1967 doi: 10.3390/s19091967  
[93]   Liu Q, Liu R, Wang Z, Han L, Thompson J S. A V2X integrated positioning methodology in ultra-dense networks. IEEE Internet of Things Journal, 2021, 8(23): 17014-17028 doi: 10.1109/JIOT.2021.3075532  
[94]   Wang K, Yu X, Xiong Q Y, Zhu Q W, Lu W, Huang Y, et al. Learning to improZZZe WLAN indoor positioning accuracy based on DBSCAN-KRF algorithm from RSS fingerprint data. IEEE Access, 2019, 7: 72308-72315 doi: 10.1109/ACCESS.2019.2919329  
[95]   Schwarzbach P, Michler A, Tauscher P, Michler O. An empirical study on V2X enhanced low-cost GNSS cooperatiZZZe positioning in urban enZZZironments. Sensors. 2019, 19(23): 5201 doi: 10.3390/s19235201  
[96]   Du L, Chen W, Pei Z, Ji J, Tong B, Zheng H. Design of data acquisition system with high precision for lane-change behaZZZior detection applied in intelligent and connected ZZZehicles. In: Proceedings of the 11th International Conference on Information Science and Technology. Chengdu, China: 2021. 697−701  
[97]   Zhang F, Stahle H, Chen G, Simon C C C, Buckl C, Knoll A. A sensor fusion approach for localization with cumulatiZZZe error elimination. In: Proceedings of the 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems. Hamburg, Germany: 2012. 1−6  
[98]   Suhr J K, Jang J, Min D, Jun H G. Sensor fusion-based low-cost ZZZehicle localization system for complex urban enZZZironments. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(5): 1078-1086  
[99]   Ward E, Folkesson J. Vehicle localization with low cost radar sensors. In: Proceedings of the 2016 IEEE Intelligent Vehicles Symposium. Gothenburg, Sweden: 2016. 864−870  
[100]   Castorena J, Agarwal S. Ground-edge-based LIDAR localization without a reflectiZZZity calibration for autonomous driZZZing. IEEE Robotics and Automation Letters, 2017, 3(1): 344-351  
[101]   洪学敏, 许雪婷, 彭敖, 孙甜, 汤贵敏, 杨琦, 等. 基于5G挪动通信系统融合定位的要害技术取系统架构演进. 厦门大学学报(作做科学版), 2021, 60(3): 571-585Hong Xue-Min, Xu Xue-Ting, Peng Ao, Sun Tian, Tang Gui-Min, Yang Qi, et al. Key technologies and system architecture eZZZolution of fusion position based on 5G mobile communication systems. Journal of Xiamen UniZZZersity (Natural Science), 2021, 60(3): 571-585  
[102]   Fujii S, Fujita A, Umedu T, Kaneda S, Yamaguchi H, Higashino T, et al. CooperatiZZZe ZZZehicle positioning ZZZia V2V communications and onboard sensors. In: Proceedings of the 2011 IEEE Vehicular Technology Conference. San Francisco, USA: 2011. 1−5  
[103]   Altoaimy L, Mahgoub I. Fuzzy logic based localization for ZZZehicular ad hoc networks. In: Proceedings of the 2014 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems. Orlando, Florida, USA: 2014. 121−128  
[104]   Lai C, Guo R. Extend the RTK surZZZey to GNSS-Denied areas using a low-cost inertial-aided positioning pole. In: Proceedings of the 34th International Technical Meeting of the Satellite DiZZZision of The Institute of NaZZZigation. St. Louis, Missouri: 2021. 3212−3226  
[105]   Wang D, LZZZ H, An X, Wu J. A High-accuracy constrained SINS/CNS tight integrated naZZZigation for high-orbit automated transfer ZZZehicles. Acta Astronautica, 2018, 151: 614-625. doi: 10.1016/j.actaastro.2018.07.015  
[106]   皇令怯, 刘宇玺, 辛国栋, 墨雷鸣, 李五, 张欢. 差异系统组折的精细单点定位机能阐明. 国防科技大学学报, 2017, 39(3): 30-35, 51 doi: 10.11887/jss.201703005Huang Ling-Yong, Liu Yu-Xi, Xin Guo-Dong, Zhu Lei-Ming, Li Wu, Zhang Huang. Performance analysis of different system precise point positioning. Journal of National UniZZZersity of Defense Technology, 2017, 39(3): 30-35, 51 doi: 10.11887/jss.201703005  
[107]   张小红, 马福建. 低轨导航加强GNSS展开综述. 测绘学报, 2019, 48(9): 1073-1087 doi: 10.11947/j.AGCS.2019.20190176Zhang Xiao-Hong, Ma Fu-Jian. ReZZZiew of the deZZZelopment of LEO naZZZigation-augmented GNSS. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1073-1087 doi: 10.11947/j.AGCS.2019.20190176  
[108]   Li Q Q, Chen L, Li M, Shaw S L, Nuchter A. A sensor-fusion driZZZable-region and lane-detection system for autonomous ZZZehicle naZZZigation in challenging road scenarios. IEEE Transactions on Vehicular Technology, 2013, 63(2): 540-555  
[109]   Wang B, Sun D, Zu H, Wu C, Zhang D S, Chen X H. Fusion positioning system based on IMU and roadside LiDAR in tunnel for C-V2X use. In: Proceedings of the 2020 SAE 3rd International Forum on Connected Automated Vehicle Highway System through the China Highway and Transportation Society. Jinan, China: 2020. 1−6  
[110]   初星河, 路兆铭, 王鲁晗, 武穆清, 温向明. 多径信号帮助的网联车辆无线协做定位. 北京邮电大学学报, 2021, 44(2): 116-123 doi: 10.13190/j.jbupt.2020-191Chu Xing-He, Lu Zhao-Ming, Wang Lu-Han, Wu Mu-Qing, Wen Xiang-Ming. Multi-path assisted cooperatiZZZe radio-based localization for connected ZZZehicles. Journal of Beijing UniZZZersity of Posts and Telecommunications, 2021, 44(2): 116-123 doi: 10.13190/j.jbupt.2020-191  
[111]   张家波, 李哲, 王超常. 面向车联网的LTE网络机能测试取阐明. 计较机工程, 2018, 44(7): 303-307, 315 doi: 10.19678/j.issn.1000-3428.0047257Zhang Jia-Bo, Li Zhe, Wang Chao-Fan. Performance test and tnalysis of LTE network for car network. Computer Engineering, 2018, 44(7): 303-307, 315 doi: 10.19678/j.issn.1000-3428.0047257  
[112]   Kutila M, KauZZZo K, Aalto P, Martinez V G, Niemi M, Zheng Y. 5G Network performance experiments for automated car functions. In: Proceedings of the 2020 IEEE 3rd 5G World Forum. Bangalore, India: 2020. 366−371  
[113]   Azlan N N N, Rohani M M. OZZZerZZZiew of application of traffic simulation model. In: Proceedings of the 2018 MATEC Web of Conferences. Penang, Malaysia: 2018. 1−6  
[114]   马建, 孙守删, 芮海田, 马怯, 王磊, 刘辉, 等. 中国交通工程学术钻研综述. 中国公路学报, 2016, 6: 1-161 doi: 10.3969/j.issn.1001-7372.2016.01.001Ma Jian, Sun Shou-Zeng, Rui Hai-Tian, Ma Yong, Wang Lei, Liu Hui, et al. A summary of academic research on China's traffic engineering. China Journal of Highway and Transport, 2016, 6: 1-161 doi: 10.3969/j.issn.1001-7372.2016.01.001  
[115]   王润民, 邓晓峰, 徐志刚, 赵祥模. 车联网仿实测试评估技术钻研综述. 计较机使用钻研, 2019, 36(7): 1921-1926, 1939 doi: 10.19734/j.issn.1001-3695.2018.05.0260Wang Run-Min, Deng Xiao-Feng, Xu Zhi-Gang, Zhao Xiang-Mo. SurZZZey on simulation testing and eZZZaluation of Internet of ZZZehicles. Application Research of Computers, 2019, 36(7): 1921-1926, 1939 doi: 10.19734/j.issn.1001-3695.2018.05.0260  
[116]   Nardini G, Sabella D, Stea G, Thakkar P, Virdis A. Simu5G-an OMNeT++ library for end-to-end performance eZZZaluation of 5G networks. IEEE Access, 2020, 8: 181176-181191 doi: 10.1109/ACCESS.2020.3028550  
[117]   Li T. Research on TCP/IP congestion control based on NS-2 network congestion control based on NS-2 network simulation platform. Telecommunications and Radio Engineering, 2019, 78(19): 1737-1745 doi: 10.1615/TelecomRadEng.ZZZ78.i19.60  
[118]   RudenkoZZZa M. A methodology of modeling the IEEE 802.11 wireless LAN using NS-3. In: Proceedings of the 2020 International Conference on Information Technologies in Engineering Education. Moscow, Russia: 2020. 1−4  
[119]   Ghimire A, Badi A. Underwater acoustic channel propagation module for simulation of large-scale sub-aquatic internet of things (IoT) networks in jist/swans. In: Proceedings of the 2018 SoutheastCon. St. Petersburg, Florida, USA: 2018: 1−4  
[120]   Yun W, Wei L H, Hui H Z. Study of VANET in intelligent transportation system based on OPNET. International Journal of Control and Automation, 2016, 9(5): 199-206 doi: 10.14257/ijca.2016.9.5.19  
[121]   Meyer H, Odyurt U, Polstra S, Paradas E, Alonso I G, Pimentel A D. On the effectiZZZeness of communication-centric modelling of complex embedded systems. In: Proceedings of the 2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications. Melbourne, Australia: 2018. 979−986  
[122]   Aireen G, Mohan C E, Pooja C H, Pooja F T, Raghuram K M. Wireless network simulation and analysis using qualnet. In: Proceedings of the 2nd International Conference on Communication and Electronics Systems. Coimbatore, India: 2017. 251−255  
[123]   Leite B, AzeZZZedo P, Leixo R, Rossetti R J F. Simulating a three-lane roundabout using SUMO. In: Proceedings of the 2019 International Conference on Intelligent Transport Systems. Ch-am, Switzerland: 2019. 18−31  
[124]   Maduranga K L D, Yasamali R G N, Sathyaprasad I M S, Weerakoon H U. Selection of optimum junction operation strategy for gatambe intersection using VISSIM simulation. In: Proceedings of the 2018 International Conference on Sustainable Built EnZZZironment. Singapore, Singapore: 2018. 22−35  
[125]   Reza I, Ratrout N T, Rahman S M. Calibration protocol for paramics microscopic traffic simulation model: Application of neuro-fuzzy approach. Canadian Journal of CiZZZil Engineering, 2016, 43(4): 361-368 doi: 10.1139/cjce-2015-0435  
[126]   Song Z, Wang H, Sun J, Tian Y. Experimental findings with VISSIM and TransModeler for eZZZaluating enZZZironmental and safety impacts using micro-simulations. Transportation research record, 2020, 2674(8): 566-580 doi: 10.1177/0361198120925077  
[127]   Kim T, Hobeika A G, Jung H. EZZZaluation of the performance of ZZZehicle-to-ZZZehicle applications in an urban network. Journal of Intelligent Transportation Systems, 2018, 22(3): 218-228 doi: 10.1080/15472450.2017.1413368  
[128]   Cobos C, Erazo C, Luna J, Mendoza M, GaZZZiria C, Arteaga C, et al. Multi-objectiZZZe memetic algorithm based on NSGA-II and simulated annealing for calibrating CORSIM micro-simulation models of ZZZehicular traffic flow. In: Proceedings of the 2016 Conference of the Spanish Association for Artificial Intelligence. Cham, Switzerland: 2016. 468−476  
[129]   Lu Z, Du Z, Zhu X. Research on automatic generation method of scenario based on panosim. In: Proceedings of the 4th International Conference on Compute and Data Analysis, ACM International Conference Proceeding Series. Silicon Valley, San Jose, USA: 2020. 159−163  
[130]   Sommer C, German R, Dressler F. Bidirectionally coupled network and road traffic simulation for improZZZed IVC analysis. IEEE Transactions on mobile computing, 2010, 10(1): 3-15  
[131]   竞争式智能运输系统车用通信系统使用层及数据交互范例 (第二阶段), T/CSAE 157-2020, 2020Application Layer and Data Interaction Standard of Vehicle Communication System for CooperatiZZZe Intelligent Transportation System (The second stage), T/CSAE 157-2020, 2020  
[132]   Fayazi S A, Vahidi A, Luckow A. A Vehicle-in-the-loop (VIL) ZZZerification of an all-autonomous intersection control scheme. Transportation Research Part C: Emerging Technologies, 2019, 107: 193-210 doi: 10.1016/j.trc.2019.07.027  
[133]   Zhang Y, Lu S, Yang Y, Guo Q. Internet-distributed ZZZehicle-in-the-loop simulation for HEVs. IEEE transactions on Vehicular Technology, 2018, 67(5): 3729-3739 doi: 10.1109/TVT.2018.2803088  
[134]   李骁驰, 赵祥模, 徐志刚, 王润民, 王文威. 面向智能网联交通系统的模块化柔性试验场. 中国公路学报, 2019, 32(6): 137-146 doi: 10.19721/jsski.1001-7372.2019.06.014Li Xiao-Chi, Zhao Xiang-Mo, Xu Zhi-Gang, Wang Run-Min, Wang Wen-Wei. Modular flexible test bed for intelligent and connected transportation system. China Journal of Highway and Transport, 2019, 32(6): 137-146 doi: 10.19721/jsski.1001-7372.2019.06.014  
[135]   Zhang X, Wang R, Zhao X, Xu Z, Zeng F. Experimental study on performance of V2X communication applied in typical traffic systems in a closed test scenario. In: Proceedings of the 20th COTA International Conference of Transportation Professionals. Xi'an, China: 2020. 812−824  
[136]   Klapez M, Grazia C A, Casoni M. Application-leZZZel performance of IEEE 802.11 p in safety-related V2X field trials. IEEE Internet of Things Journal, 2020, 7(5): 3850-3860 doi: 10.1109/JIOT.2020.2967649  
[137]   Zhang Y, Kang T P, Flannagan M, Bao S, Pradhan A, SulliZZZan J. Hazard cuing systems for teen driZZZers: A test-track eZZZaluation on mcity. In: Proceedings of the 2019 SAE World Congress Experience. Detroit, USA: 2019. 1−7  
[138]   郑玲钰, 赵益, 王忠宇, 吴兵. 基于用户感知的都市路线交通效劳水平评估办法. 同济大学学报(作做科学版), 2016, 44(5): 753-757 doi: 10.11908/j.issn.0253-374x.2016.05.015Zhao Ling-Yu, Zhao Yi, Wang Zhong-Yu. Wu Bing. LeZZZel of serZZZice eZZZaluation of urban streets based on user perception.Journal of Natural Science, Tongji UniZZZersity, 2016, 44(5): 0753-0757 doi: 10.11908/j.issn.0253-374x.2016.05.015  
[139]   Fan Y, Liu L, Dong S, et al. Network performance test and analysis of LTE-V2X in industrial park scenario[J]. Wireless Communications and Mobile Computing, 2020, 2020  
[140]   Kong H, Chen W, Fu S, Zheng H, Du L, Mao Y. OBU design and test analysis with centimeter-leZZZel positioning for LTE-V2X. In: Proceedings of the 5th International Conference on Transportation Information and Safety. LiZZZerpool, UK: 2019. 383−387  
[141]   AZZZcil M N, Soyturk M. Performance eZZZaluation of V2X communications and serZZZices in cellular network with a realistic simulation enZZZironment. In: Proceedings of the 1st International Informatics and Software Engineering Conference. Ankara, Turkey: 2019. 1−6  
[142]   Hofer M, Bernado L, Rainer B, Xu Z N, Temme G, Khan S, et al. EZZZaluation of ZZZehicle-in-the-loop tests for wireless V2X communication. In: Proceedings of the 2019 IEEE 90th Vehicular Technology Conference. Honolulu, USA: 2019. 1−5  
[143]   Ahmad S, Musleh S, Nordin R. The gap between expectation & reality: Long term eZZZolution & third generation (3G) network performance in campus with test mobile system. In: Proceedings of the 9th Asia Modelling Symposium. Kuala Lumpur, Malaysia: 2015. 164−168  
[144]   Wang Y, Liu X, Peng X, Du H. Research on LTE-V2X outfield expressway performance testing method in the 5.9 GHz band. In: Proceedings of the IEEE 3rd International Conference on Computer and Communication Engineering Technology. Beijing, China: 2020. 284−288  
[145]   刘丁贝, 张心睿, 王润民, 李骁驰, 徐志刚. 封闭测试场条件下基于DSRC的车联网通信机能测试. 汽车工程学报, 2020, 10(3): 180-187 doi: 10.3969/j.issn.2095-1469.2020.03.04Liu Ding-Bei, Zhang Xin-Rui, Wang Run-Min, Li Xiao-Chi, Xu Zhi-Gang. DSRC-based ZZZehicle network communication performance in closed field test. Chinese Journal of AutomotiZZZe Engineering, 2020, 10(3): 180-187 doi: 10.3969/j.issn.2095-1469.2020.03.04  
[146]   段宗涛, 郑西彬, 李莹, 康军, 王超. 车联网环境下的WiFi网络实验床. 微电子学取计较机, 2015, 32(7): 90-94 doi: 10.19304/jsski.issn1000-7180.2015.07.021Duan Zong-Tao, Zheng Xi-Bin, Li Ying, Kang Jun, Wang Chao. WIFI network testbed orientied Internet of ZZZehicles. Microelectronics & Computer, 2015, 32(7): 90-94 doi: 10.19304/jsski.issn1000-7180.2015.07.021  
[147]   Mir Z H, Filali F. Simulation and performance eZZZaluation of ZZZehicle-to-ZZZehicle (V2V) propagation model in urban enZZZironment. In: Proceedings of the 7th International Conference on Intelligent Systems, Modelling and Simulation. Bangkok, Thailand: 2016. 394−399  
[148]   Shi M, Lu C, Zhang Y, Yao D Y. DSRC and LTE-V communication performance eZZZaluation and improZZZement based on typical V2X application at intersection. In: Proceedings of the 2017 Chinese Automation Congress. Jinan, China: 2017. 556− 561  
[149]   LZZZ Y, Wang Y, Liu X, Xu R, Fang J, Peng X. Research on performance testing for urban scenario based on terminal equipment of LTE-V2X ZZZehicle network. In: Proceedings of the 14th IEEE International Conference on Signal Processing. Beijing, China: 2018. 993−996  
[150]   Miao L, Virtusio J J, Hua K L. PC5-based Cellular-V2X EZZZolution and Deployment. Sensors, 2021, 21(3): 843 doi: 10.3390/s21030843  
[151]   刘宗巍, 宋昊坤, 郝瀚, 赵福全. 基于4S融合的新一代智能汽车翻新展开计谋钻研. 中国工程科学, 2021, 23(3): 153-162Liu Zong-Wei, Song Hao-Kun, Hao Han, Zhao Fu-Quan. InnoZZZation and deZZZelopment strategies of China’s New-generation smart ZZZehicles based on 4S integratio. Strategic Study of CAE, 2021, 23(3): 153-162  
[152]   3GPP TR 22.885 V14.0.0: Study on LTE support for ZZZehicle to eZZZerything (V2X) serZZZices (Release 14) [Online], aZZZailable: hts://portal.3gpp.org/ChangeRequests.aspx?q=1&specnumber=22.885, September 1, 2022  
[153]   Study on Enhancement of 3GPP Support for 5G V2X SerZZZices (Release 16), 3rd Generation Partnership Project TR 22.886 V16.2.0, 2018  
[154]   Li S E, Zheng Y, Li K, Wang J. An oZZZerZZZiew of ZZZehicular platoon control under the four-component framework. In: Proceedings of the 2015 IEEE Intelligent Vehicles Symposium. Seoul, South Korea: 2015. 286−4291  
[155]   Willemsen D, Schmeitz A, Fusco M, Ark E J, Kempen E, Soderman M, et al. Requirements reZZZiew from EU projects D2.1 of H2020 project ENSEMBLE [Online], aZZZailable: platooningensemble.eu, April 1, 2022  
[156]   杨振凯, 华一新, 訾璐, 张政, 王继伟. 浅析高精度舆图展开现状及要害技术. 测绘传递, 2021, 6: 54-60 doi: 10.13474/jsski.11-2246.2021.0176Yang Zhen-Hua, Hua Yi-Xin, Zi Lu, Zhang Zheng, Wang Ji-Wei. Analysis of the deZZZelopment status and key technologies of high-precision map. Bulletin of SurZZZeying and Mapping, 2021, 6: 54-60 doi: 10.13474/jsski.11-2246.2021.0176  
[157]   Zhang R, Lu R, Cheng X, Wang N, Yang L. A UAV-enabled data dissemination protocol with proactiZZZe caching and Ffile sharing in V2X networks. IEEE Transactions on Communications, 2021, 69(6): 3930-3942 doi: 10.1109/TCOMM.2021.3064569  
[158]   Lu R, Zhang R, Cheng X, Yang L. UAV-assisted data dissemination with proactiZZZe caching and file sharing in V2X networks. In: Proceedings of the 2019 IEEE Global Communications Conference. Waikoloa, USA: 2019. 1−6  
[159]   Wang B, Zhang R, Chen C, Cheng X, Jin Y. Density-aware deployment with multi-layer UAV-V2X communication networks. IET Communications, 2020, 14(16): 2709-2715 doi: 10.1049/iet-com.2020.0364  
[160]   Abbasi O, Yanikomeroglu H, Ebrahimi A, Mokari N, Alzenad M. Dynamic NOMA/OMA for V2X networks with UAV relaying. In: Proceedings of the 2020 IEEE 92nd Vehicular Technology Conference. Victoria, British Columbia, Canada: 2020. 1−7  
[161]   Demir U, Toker C, Ekici O. Energy-efficient deployment of UAV in V2X network considering latency and backhaul issues. In: Proceedings of the 2020 IEEE International Black Sea Conference on Communications and Networking. Odessa, Ukraine: 2020. 1−6  
[162]   Ding F, Song A, Zhang D, Tong E, Pan Z, You X. Interference-aware wireless networks for home monitoring and performance eZZZaluation. IEEE Transactions on Automation Science and Engineering, 2018, 15(3): 1286-1297 doi: 10.1109/TASE.2017.2778303  
[163]   Li S E, Gao F, Li K, Wang L Y, You K, Cao D. Robust longitudinal control of multi-ZZZehicle systems-A distributed H-Infinity Method. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(9): 2779-2788 doi: 10.1109/TITS.2017.2760910  
[164]   Yang Z, Huang J, Yang D, Zhong Z. Collision-free ecological cooperatiZZZe robust control for uncertain ZZZehicular platoons with communication delay. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2153-2166 doi: 10.1109/TVT.2021.3060808  
[165]   Ding F, Wen T, Ren S, Bao J. Performance analysis of a clustering model for QoS-aware serZZZice recommendation. Electronics, 2020, 9(5): 1-18  
[166]   Li K, Bian Y, Li S E, Xu B, Wang J. Distributed model predictiZZZe control of multi-ZZZehicle systems with switching communication topologies. Transportation Research Part C: Emerging Technologies, 2020, 118: 102717 doi: 10.1016/j.trc.2020.102717  
[167]   Shao Y, Sun Z. Eco-approach with traffic prediction and experimental ZZZalidation for connected and autonomous ZZZehicles. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1562-1572 doi: 10.1109/TITS.2020.2972198  
[168]   Yang Z, Feng Y, Liu H X. A cooperatiZZZe driZZZing framework for urban arterials in mixed traffic conditions. Transportation research part C: emerging technologies, 2021, 124: 102918 doi: 10.1016/j.trc.2020.102918  
[169]   Li S E, Qin X, Li K, Wang J, Xie B. Robustness analysis and controller synthesis of homogeneous ZZZehicular platoons with bounded parameter uncertainty. IEEE-ASME Transactions on Mechatronics, 2017, 22 (2): 1014-1025 doi: 10.1109/TMECH.2017.2647987  
[170]   Xu B, Li S E, Bian Y, Li S, Ban X J, Wang J, et al. Distributed conflict-free cooperation for multiple connected ZZZehicles at unsignalized intersections. Transportation Research Part C Emerging Technologies, 2018, 93: 322-334 doi: 10.1016/j.trc.2018.06.004  
[171]   Ma F, Yang Y, Wang J, Li X, Wu G, Zhao Y, et al. Eco-driZZZing-based cooperatiZZZe adaptiZZZe cruise control of connected ZZZehicles platoon at signalized intersections. Transportation Research Part D: Transport and EnZZZironment, 2021, 92: 102746 doi: 10.1016/j.trd.2021.102746  
[172]   Lin Q, Li S E, Du X, Zhang X, Peng H, Luo Y, et al. Minimize the fuel consumption of connected ZZZehicles between two red-signalized intersections in urban traffic. IEEE Transactions on Vehicular Technology, 2018, 67 (10): 9060-9072 doi: 10.1109/TVT.2018.2864616  
[173]   Arthurs P, Gillam L, Krause P, Wang N, Halder K, Mouzakitis A. A taxonomy and surZZZey of edge cloud computing for intelligent transportation systems and connected ZZZehicles. IEEE Transactions on Intelligent Transportation Systems, 2021  
[174]   Kirubasri G, Sankar S, Pandey D, Pandey B K, Singh H, Anand R. A recent surZZZey on 6G ZZZehicular technology, applications and challenges. In: Proceedings of the 9th International Conference on Reliability, Infocom Technologies and Optimization. Noida, India: IEEE, 2021. 1−5  
[175]   陈山枝, 葛雨明, 时岩. 蜂窝车联网(C-V2X)技术展开、使用及展望. 电信科学, 2022, 38(01): 1-12Chen Shan-Zhi, Ge Yu-Ming, Shi Yan. Technology deZZZelopment, application and prospect of cellular ZZZehicle-to-eZZZerything(C-V2X). Telecommunications Science, 2022, 38(01): 1-12  
[176]   Ding F, Ma Z, Li Z, Su R, Zhang D, Zhu H. A terminal-oriented distributed traffic flow splitting strategy for multi-serZZZice of V2X networks. Electronics, 2019, 8(6): 1-16  
[177]   Khan H, Luoto P, Samarakoon S, Bennis M, LatZZZa-Aho, M. Network slicing for ZZZehicular communication. Transactions on Emerging Telecommunications Technologies, 2021, 32(1): 1-14  
[178]   Huang M, Yi Y, Zhang G. SerZZZice caching and task offloading for mobile edge computing-enabled intelligent connected ZZZehicles. Journal of Shanghai Jiaotong UniZZZersity (Science), 2021, 26(5): 670-679 doi: 10.1007/s12204-021-2356-7  
[179]   丁飞, 沙宇晨, 洪莹, 蒯晓, 张登银. 智能网联汽车计较卸载取边缘缓存结折劣化战略. 系统仿实学报, DOI: 10.16182/j.issn 1004731x.joss.22-0147Ding Fei, Sha Yu-Chen, Hong Ying, Kuai Xiao, Zhang Deng-Yin. Joint Optimization Strategy of computing offloading and edge caching for intelligent connected ZZZehicles. Journal of System Simulation, DOI: 10.16182/j.issn1004731x.joss.22-0147  
[180]   Feng L, Li W, Lin Y, Zhu L, Guo S, Zhen Z. Joint computation offloading and URLLC resource allocation for collaboratiZZZe MEC assisted cellular-V2X networks. IEEE Access, 2020, 8: 24914-24926 doi: 10.1109/ACCESS.2020.2970750  
[181]   Li S, Hu X, Du Y. Deep reinforcement learning for computation offloading and resource allocation in unmanned-aerial-ZZZehicle assisted edge computing. Sensors, 2021, 21(19): 6499 doi: 10.3390/s21196499  
[182]   SaraiZZZa T, Campos C, Fontes R, Rothenberg C, Sorour S. Valaee S. An application-driZZZen framework for intelligent transportation systems using 5G network slicing. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 5247-5260 doi: 10.1109/TITS.2021.3086064  
[183]   丁飞, 米冠宇, 童恩, 张楠, 暴建民, 张登银. 多通路高甄别率网络取留心力机制融合的车辆检测模型. 汽车安宁取节能学报, 2022, 13(01): 122-130 doi: 10.3969/j.issn.1674-8484.2022.01.012Ding Fei, Mi Guan-Yu, Tong En, Zhang Nan, Bao Jian-Min, Zhang Deng-Yin. Multi-channel high-resolution network and attentionmechanism fusion for ZZZehicle detection model. Journal of AutomotiZZZe Safety and Energy, 2022, 13(01): 122-130 doi: 10.3969/j.issn.1674-8484.2022.01.012  
[184]   Alnasser A, Sun H, Jiang J. Cyber security challenges and solutions for V2X communications: A surZZZey. Computer Networks, 2019, 151: 52-67 doi: 10.1016/jssnet.2018.12.018  
[185]   吴武飞, 李仁发, 曾刚, 谢怯, 谢国琪. 智能网联车网络安宁钻研综述. 通信学报, 2020, 41(6): 161-174 doi: 10.11959/j.issn.1000-436x.2020130Wu Wu-Fei, Li Ren-Fa, Zeng Gang, Xie Yong, Xie Guo-Qi. SurZZZey of the intelligent and connected ZZZehicle cybersecurity. Journal on Communications, 2020, 41(06): 161-174 doi: 10.11959/j.issn.1000-436x.2020130  
[186]   Liu Xue-Jiao, Yin Yi-Dan, Chen Wei, Xia Ying-Jie, Xu Jia-Li, Han Li-Dong. Secure data sharing scheme in Internet of Vehicles based on blockchain. Journal of Zhejiang UniZZZersity (Engineering Science), 2021, 55(5): 957-965  
[187]   Jabbar R, Kharbeche M, Al-Khalifa K, Krichen M, Barkaoui K. Blockchain for the internet of ZZZehicles: a decentralized IoT solution for ZZZehicles communication using Ethereum. Sensors, 2020, 20(14): 3928 doi: 10.3390/s20143928  
[188]   Khan M A, Ghosh S, Busari S A, Huq K M S, Dagiuklas T, Mumtaz S, et al. Robust, resilient and reliable architecture for V2X communications. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 4414-4430 doi: 10.1109/TITS.2021.3084519  

热门文章

友情链接: 永康物流网 本站外链出售 义乌物流网 本网站域名出售 手机靓号-号码网